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1. INTRODUCTION

1.1 Correlation Statistics

In this article results are given on the large-sample behaviour

of normal order statistics. These are then used to demonstrate that

two correlation statistics for testing normality, introduced at about

the same time by Shapiro and Francia (1972) and by De Wet and Venter

(1972), have the same asymptotic distribution, given and tabulated

by De Wet and Venter (1972).

A correlation statistic for goodness-of-fit is one based on the

usual correlation coefficient for pairs of random variables.

The definition is extended to give a "correlation" between order

statistics Xln < X2n ... < X of a random sample of size n andSm

a suitable set of constants tin' i-l,2,...,n. The correlation

statistic rn (X,t) is then defined by

(X in-X)(tin-t)

i
rn(X,t) - { (i-2 • (i-)2}i/2

in in

where the sums are for i from 1 to n and where X = / Xin and

- tin /n. The set {Xin; i-1,2,...,n} will be referred to as an
in n

order sample; it will also be referred to simply as X, or X', where

X' is the row vector (Xln X2n,....Xnn).

Suppose the test of fit is a test of the null hypothesis H0 : X

comes from the distribution F(x;6), where 6 is a vector of parameters.

In many test situations, such as a test for normality, the components of

8 are location and scale parameters, o and respectively. Suppose



then that the distribution is written F(x;c,B). Let {W i-1,2,...,}

be the order statistics from a random sample of size n from F(x;O,1),

let E denote expectation, and let mi E(W i (the min s will

usually be known, or known with resonable accuracy). We now note that

Xin can be written oi+BWn; so if we assume that Win is close to

its expectation mn - which will generally be true - we have the

representation

(1) X in ~ 01+Bmin.

In other words, the Xin's should be roughly linearly related to the

m *nIS.

To investigate H0 with ct and B unknown it is therefore

natural to use a measure of how well the linear relation (1) holds.

By choosing tin to be m we obtain an obvious test statistic

r(X,m ). Another procedure for testing H0 was introduced by Shapiro

and Wilk (1965). The test statistic is based on a comparison of the

estimate a of the slope in (2), obtained by generalized least-squares,

with the estimate of 8 obtained from the sample variance.

1.2 Test for Normality
A

Consider the case where we wish to test whether the ordered sample

X comes from a Normal distribution, with unknown mean W and unknown

variance 02, written N( ,02). Then the Win will be order statistics

from N(O,1); let these be called Zln < 2n < ... < Znn, let

min E(Zin) , and let m be the column vector (mln ,m2n,...,mnn).

2
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Let v ij be the covariance between Zin and Z n, that is,

v " E(Z i-m in)(Zn-mn), and let V be the matrix with entries

vij, i,j-l,...,n. We now have

E(Xin) = C+Omin,

that is, a - V and a = . The generalized least-squares estimate

of 8 is then

,,-l/(M,-
= m'V m'V

and the test statistics proposed by Shapiro and Wilk is

W ,, 2R4 /( 2 
2 )

where S 2  E (Xn-X)2, X - E X n/n, and R 2 and C 2  are respectively
i i

the constants m'V-i m and m'V-'V- I . The constants R 2 and C2 are

inserted to make 0 < W < 1 and clearly S2 /(n-1) is the sample variance

2 2

estimate of S2.I

The use of this statistic is limited by the need to tabulate the

coefficient vector a' - m'V -1/C; this was done by Shapiro and Wilk

(1965), using both exact and approximate methods, for n < 50. For

larger values of n, Shapiro and Francis (1972) proposed the statistic

W (m'X) 2 /{(m'm)2S 2 } ;

wh. .- ) .. .. .. .. - , and R... and, C. are. res ti
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t.vw. W- - . .t a a a .. 7 I..h . -

this can be seen to be equal to the correlation statistic r2(X,m),

that is, the simple correlation between X and m. The statistic

W1 may be regarded as a large sample version of W because of the

fact that, for large n, we may write (nonrigorously) V-1m z 2m

(Stephens, 1975); then W' w W for large n. W' is simpler than

W but is still difficult to calculate because of the need to evaluate

the min; also no rigorous asymptotic theory exists for W or W'.

Various authors have suggested other values for tin to be

niused n r2(X,t); in particular, De Wet and Venter (1972) have

proposed tin - Bin - *-l{i/(n+l)l for the normal test where the
J e-2/2/ 1/

function 0-i(1 is defined as follows. Let u(u) - (2w)1/2

and let

-z
O' (z) E- J (~

then if y - O(z), z - -1 (y).

In addition, De Wet and Venter (1972) establish the following

asymptotic result:

where X represents an ordered random sample from a normal distribution,

a is the constant
* n

a - E[2n{l-r n(X,H)}]

4



and the Yi are independent N(0,1) variates. They provide tables

for this asymptotic distribution, and also values of an

It is well-known that min = H in except for extreme values and

De Wet and Venter imply that the asymptotic distribution of r (X,m)
2n

is the same as that of r (X,H). Since W and W' have become well
n

established as tests of normality, and have good power properties, it

would be valuable to have rigorous asymptotic theory.

In this article we first give, in Theorem 1, approximations for

mi together with expressions for the error in the approximations.

These should have some independent interest, but in Theorem 2 they

are used to show that r (X,m) does indeed have the same asymptotic
2 n

properties as r (X,H). The theorems are given in Section 2, and the
n

proofs appear in Sections 3 and 4.

1.3 Notation

In addition to the notation established above, it will be convenient

to list further definitions which will be required in the later sections.

From now on, X will refer to an ordered random sample from N(I,O2),

and vector Z, with components Z in' i-l,...,n, will be a similar

vector from N(0,1). Then let Ui, i1l,...,n be defined by Ui  4 (Zin);

vector U with components U, i-i,...,n will then be a vector of

order statistics from the uniform distribution with limits 0,1, written

U(0,1); the dropping of the second subscript n in component Ui  is

done to facilitate the printing of the algebraic calculations in Section

3 and 4, and related quantities will likewise be simplified in notation.

Thus we define V - -log(Ui); note that V1 > V2 > ... > Vn are order

~~"5



statistics from a standard exponential distribution. Let i(.) be
the function defined by Z in- - (U) - 0-l{exp(-V ) - W(i,

i-ii
~Set Y(u) - p"(log u-l), and let si - E (V1) - n- (l/v); also

define p es.e

The end of a proof will be marked by I.

] ," *.6
'Su
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2. TWO THEOREMS

2.1 An Approximation for min'

Let Zin, in i, Vi and si, for i1l,...,n, be as defined in

Section 1.3. We have

THEOREM 1: The mean min of Zin is given by

S 0-i {exp(-s i)} + Rn+l
in - in' 1_

where

IRin < Ci-{log(n/i)}
- 3/2

and C is a constant independent of i and n.

REMARKS. (1) min w -mjn' where J - n+l-i, so the theorem covers

1 < i <n.
-Si

(2) For i far enough away from 1, e i i/(n+l); the theorem

then gives m 0-1 {i/(n+l)} = Hin above, a familiar approximation for

m in* Blom (1958) introduced the idea of using exponential order statis-

tics, although he expanded Zin about log{i/(n+l)} and restricted his

attention to the case of i fixed as n .

(3) A crude expression for the error term when Hin is used to

approximate min was stated by David and Johnson (1956) but this requires

i/n to be bounded away from both 0 and 1. Lemma 6 below shows that

7
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when RHIn is used to approximate min the error term is of order

i-1{log(n/i)}-1/2 , 1 < i < [(n+l)/2]. Thus 0-1 (exp(-s1 )) provides

a better approximation, at least asymptotically.

2.2 The next theorem establishes the equivalence of the asymptotic

distributions for r (Z,m) and r (Z,H).
n n

THEOREM 2: With r n(Z,m) and r (Z,H) defined as in Section 1.1,

n{rn(Zm) - rn(Z,H)1 , 0

in probability.

Since, under H0 , Zin - (X in -)/a, it follows that r n(X,m) E r n(Zm)

and r n(X,H) r n(Z,H). Thus Theorem 2 asserts that the Shapiro-Francia and

the De Wet-Venter correlation statistics have the same null asymptotic

distributions.

In the next two sections we give the proofs of Theorems 1 and 2.

8



3. PROOF OF THEOREM 1

3.1 Throughout the section we suppose 1 < i < [(n+l)/2]. In this

paragraph the first steps in the proof are given. These steps mo-

tivate a series of le-uas which are required to complete the proof.

n Ti
To begin, we expand Zin about si = 1/v. This gives, using the

notation Zin -1 (e i)

1 2Zi T (si ) +  (V -si)W'(s )  + .1(Vi-si )  Y'"(6i )

where ei  lies between si  and Vi. Taking expectations gives
i ii

mi =E(Z = I (si) + E -1vi-si ) 2 (6

We need to evaluate E(V -si) 2 '"(e) Recall that U. exp(-V and

let gin be the density of Ui; we have

.n-l i-l n-i

gin(U) = nii)U (1-u) ,0<u<1.

0
Also with pi 0 exp(-si)' we define hi by:

p0[l+X(i-l)-i/2log n] for i > l+X2log n

hin 10 3 -1 2
pi(+ i log n) for 1 < i < 1+X log n

with X 10. Then

a 9

I i:;,.. 2€2 .;.;:,¢4 % ,¢.. ' .:- ,g" "".x"€-"<.:: v ." ...- . .\%'.,L%' .;'



'is'
E(V -s)2"(8) y(u)du i 2'

where y(u) = (log u 1-s1)
2'"(e )gin (u), and

h1

(2) 1 r y(u)du and 12- 2 y(u)du
0 hin

I must now be evaluated by evaluating 11 and 12. To do this, a

'* series of lemmas is needed. A key result in the proof of Theorem 1

is Lemna 1.

-1LEMMA 1. The function Y(u) = T"(log u ) is monotonic increasing

and positive for 0 < u < 0.5; also

Y(u) < (It-l(u))- 3  for 4-l(u) < 0

(3)

Y(u) < 16 for _-l(U) < 1

COROLLARY:

Y(u) < 32(i+I'(u)13) - I  for t-l(u) < 1, that is, for 0 < u < $(i) .84.

PROOF OF LEMMA 1. It is easily shown that Y(u) - A(u)B(u) where

A(u) - u{(g-l (u)}-1 and B(u) - l+u- (u)[W{-l (u)}] -i.

We therefore prove that Y(u) is monotonic by proving that both

A(u) and B(u) are monotonic.

10
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p Monotonicity of A(u). Let u = *(x), and let A(u) A(X). Since

du/dx > 0, A(u) is monotonic increasing if AI(x) > 0. We have

Al(x) - 4x)/ (X); thus A'(x) - C(x)/ (x), where C(x) - (x)+xO(x)

It is easily shown that lim C(x) - 0; also C'(x) - t(x), using

the fact that *'(x) - -x (x); thus C'(x) > 0, and C(x) is positive

and monotonic increasing for all x. Hence AI(x) is positive, so A(u)

is monotonic increasing for all x.

Monotonicity of B(u). Let B(u) E Bl(X). Define the function

D(x) - (l+x 2)O(x)+xo(x). We have D'(x) - 2C(x) > 0; also lim D(x)- 0,

so D(x) is positive and monotonic increasing for all x. Now

BI(x) - l+xt(x)/O(x) - C(x)/ (x); then B1 (x) - {C'(x)+xC(x)}/O(x) -

{(l+x2)$(x)+xO(x)}/¢(x) - D(x)/ (x). Thus Bj(x) > 0; hence B'(u) >0

and so B(u) is monotonically increasing for all x.

It is well-known (see, for example, Renyi (1970, p. 164) that for

x<O,

(4) 1-x - 2 < IxIo(x)/¢(x) < 1 ;

--< , -2

thus, for x < 0, AI(x) E 0(x)/ (x)<l/IxI, and Bl(x) E l+x¢x)/(x)< ;

hence Y(u) BI(X)A1 (x) < l/Ix I1-l(u),- 3  for u < 0.5, that is, for

x < 0. For 0.5 < u < 0(l), that is, for 0 < x < 1, Y(u) is increasing,

so for the second inequality we evaluate Y(u) at u - 0(l); the value

is approximately 15.6. This completes the proof of Lemma 1.

11
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LMM 2: There is a K, independent of i, such that for all n > K

hn < i < [ (n+l)]

PROOF OF LEMMA 2. We have

A - ~ 1n-2
n V 1 < i x-1 dx ,log- 1 ) < n

V-i i-1 l -t-1

so

(5) e i/n i1-1 0 -S

- i pie < i

From the definition of hin the lemma follows. 1(:in

Lq4A 3: For a constant c0 (0 < c0 < i), there is a constant y(c0 )

such that for 0 < u < y(c0 ) <2
0 2

-1_{log(2,nu 2 ) }1/2 < f-l(u) < _{_co0Ilg(2TU 2) }1/2.

PROOF OF LEM4A 3. By (4) we have

O(z)lzl-l(i-z -2) < O(z) < O(z)izl-  ;

se io ( ' r 2  a d -1/2

se lo(7u) adz -(c 0v) ;then

12
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N--W3 .j-3 .-j -A - P

(C { V)1/2

-1 1/ 0- 1

u > -(v-l

S{1-(cv)}/{(u2) (c0v) /2

- h(u,c0 ), say

Now h(u,c0) = as u + 0 so there is a constant y0(Co) such that

h(u.c0 ) > 1 for 0 < u < y0 (c0 ). Similarly

u-l 1/2) 1 1/2 1/2

uP( < U (v )/V

-1/2

< 1, provided u < (2Tre) - 1/2

Thus, if y(c0) = min{Y0(c0),(2)-l/2}, we have for 0 < u < y0 (c0),

u-10(-v1/2 ) < 1 and u-1${-(cov)1 /21 > L. Lemma 3 follows at once. II

LEMMA 4: With p and hin defined as in Section 3.1, there is a K'

such that for n > K'

D-1 (hin)I > CID1 (p), 1< i < 2L

where C is independent of i and n.

V PROOF OF LEMMA 4. By Lemma 3, when h < Y(C with c fixed
in 0  0

(0 < c0 < 1) but otherwise arbitrary - for example, c0  can be 0.5 -

13
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ID-- (hi)I > { cog(2h2n)}1/2

123-1 1/2 2
c0  [-2log{pi(2X )i (log n)2'7}]1,1 < i < +X log n

1/2 0 -1/2 1~/2 1/2, 2

co  (-21og~pt{l+X(i-1)- (log n) 1271) l+x21og n < i <
0 472'

Using (5) we obtain

c1/21ci -- log{ (2X 3)log n} 1/2 < i < 2+X21og n
log{n(l+X21og ,)-i (20-1/2g

.141- 1 (hn) I >

*1(in)

c c1/ Iw (pl)I(l-log2/log4)
1 /2 , l+X2 1og n< i < n(32r)-1/2

and so

0' (hj)I > cli[D(p0)1 for 1 < i < n(327)- 1/2  and hin < y(c O )

When n > K, by Lemma 2, hin < (1), and by (5)

n(327) - 1 /2 < i < [1(n+l)] 1(327 )- 1/2 < p0 <1

2h 2 1 -2

>hin

For Y(c0 ) < hin < P(1), there is a c2, independent of i and n,
O 01

such that < o From these results taken together, there must

.9 be a c3  and c4, both independent of i and n, such that with

Sn > K,

"
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C (h1) 0{:I for (32w)1/ n < i < [I(n+1)]

c -1(p 0)1 fr 1< i < (327)0-1/2 n ~
fo 14 1 0 -' in~ ~<$1

This completes the proof of Lemma 4. I

1

*()(1-u) g inuWdu -o(n)

where m is an arbitrary positive real number.

PROOF OF LEKMA 5. Let

f in(u) W (i-l)! u e 31 u >O0

Lema 3 of Stigler (1969, p. 774) gives the result that for any E>0,

there is an M depending only on C such that g in(u) < Mf in (u) for

all u > 0 and i < (1-0~n. Therefore

1 (1-u)k 9 (udu - n(n-l) ... (n-k+l) 1 Wd

< N ~ fi ~k(u)du for n > 4k

< C exp{--! n(l)} u er1kl iulun )/du

1 i

< C exp{-. I n(l)}2

-o m ) a 2  ~{(n+l)log2}/2 <e 4 (n+l) e-nt(l)/2  -.~42n

15



N

This completes the proof of Lema. II

3.3 We continue with the proof of Theorem 1. We assume n > max(K,K').

From (2) in Section 3.1 we have

fh tn  '-l S2I(

- (log u )gn(du

~~ 0 Cl¢-pO13]-1 n -2

using Lemmas 1 and 4, and the fact that E(Vi 2 - 2 "

I 1 +1 where
2 21+122

€ (1

I (log u -1-si ) 2 ' (O0)gin(Ud u
121 ' 1hfin  (log

and

1 2 (log u l -s) 2T"(Oi)gin(u)du122 - $(1)n

By Le-ma 1, we can write

) 11 g16s 2 (u)du

hin

-l

using the fact that log u < si  throughout the range of the integral.

To evaluate the integral in (6) we use an argument given in Lemma 4 of

Stigler (1969). (The lemma as stated, however, has a condition missing.

Using the notation of Stigler (1969), let (i-l)<X log n, h(u)= 1, k- O,

16



t.4

and consider A',
n

f G i-i -(n-l)y'

• I' n e((n-l)y /J'
in J=O

* Yn
S-(n-1)y_ -X(i-l)log n)1/2

Suppose i - log(log n); the right hand side will not then be o(n-m)

for any m > 0. The condition b /log n -) o is also necessary. It

is to avoid this difficulty that we define hin over two regions

l+2for i.) By (5), for i > log n, we have

hin = pO[l+X{log(n)/(i-l) }1/21

> (i-l ) e-lln1+X~log(n)l (i-1)}1/1
(n-l)

> (i-1) [l+X{log(n)/(i-l)}1/21 = h* for n > K",
n innJ

where K" is an appropriate constant.

For 1 < i < l+X 2log(n) we have

hi-0 3-1 3 -

hn = p0(+X3 i- log n) > .45X 3(n-l)-l log n for n > K

where K"' is an appropriate constant.

using the fact that p > (i-)/(n+ ). Thus for i > 1 + log n,

noting that X 1 10 and fn (u) is decreasing for u > (i-l)/(n-l),

we find

17
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h gin(U)du < M h fin(u)du

in in

1/2
<Cn[ l+log(n)/(i-) 12i-1-X{(i-1)log n}

O(n-2

since (l+a/r)r < exp[a-{a/(12r)}], 0 < a < r.

For 1 < i < 1o n, we have, using wn - 0.45X3 (n-l)- log n,

: ":-' p (1) i 1

Sn gin (u)du < M1 f (U)du
i. hn - hin

< M f in (u)du
n

< M{exp(-.225X31og n)}2i ( {(n-l)/2}i i-le-u(n-l)/2du

-- (i-l)! u

< M exp[-{.225X3-(1+X 2)log 2}log n]

-o(n
-2)

Hence

121 " o(n-llog n)
2

, -eI
and, writing u for e ,

18
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2 u* (u-u* * u* (-u*)-l(u*)

I < s (1-u + ](1-u)-2gnUdu
2(1) {- (u)} -1(u) in

since p0 <u < u and hence (1-u) < (1-u)- I.

Note that (4) holds for x > 0 with O(x) replaced by 1-0(x).

We apply (4) with x - O(u*); this allows us to bound the term in

• * 1 * 1
I involving u irrespective of whether u < - or u > -22 irepetv 2'

Thus by Lemma 5, we have

I Cs 2 n-3
22 i

Finally by equation (5) and Lenna 3, we obtain

(D-l( 0 (-1> > C{1og(n)11/2, 1 < i < 1I1(n+l) I

This Completes the proof of Theorem 1. II

-19



4. PROOF OF THEOREK 2

4.1 Another series of lemas is needed for the proof of Theorem 2.

Let pi = i/(n+l) and for a vector a = (a1 ...,an )', define the

norm 111 by

n 2 1/2I ll ,( i)

LEMA 6: The following inequalities hold:

Imin-in' <_ ci- (1+Hn ) - l < c'i- 1(log(n/i) - 1 / 2, for 1 < i < [l(n+l)]

where c, c' are constants, independent of i and n.

PROOF OF LEMMA 6: By Theorem 1,

- -1 (p0 )-l( +
Iin-inl -I -0 - (pi)inl

and

0 (p0_ _01(pi - (si-log{(n+l)i-1 }]p/${- 1(p)1 +

1[s -log{ (n-l>i - l} lT" (e*>

where

log{(n+l)/il _< < si .

20
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Now

anid

nI V-+i -(n+l) -1 J xdx+i -(n+1)
V-i+1

so

0 < s i-1og{(n+l)/i} < i

By (4) and the fact that 'Y"(O) is decreasing (see Lemma 1), we

have

-1-

< clf 1 {log(n/i) 1 1/2  by Lemmna 3.

This completes the proof of Lemma 6. ~

LE4MA 7: The norm of vector rn-H satisfies

lim-HiI < c(log n)-1/2 where c is a constant independent ofn

PROOF OF LDIMA 7: From Lemma 6 we can write

21



.. m

JIH 112 (+l)/21 2

1-1 2 2 (,ai -H in)

[ (n+l)/21 -2 - n
< c ( )2J 1 2{log(n/i)1 < c"n- J (log x)-1dx

t-12

< c(log n)
- 1

where c, c', c" are constants independent of n. j

LEIA 8: The norm of vector H satisfies

n-5 log n < 11HI2 < n+l for n > 24.

PROOF OF LNMHA 8: For the second inequality

11,112 < (n+1) [ -1(u)1 2du - n+l

For the first inequality

2. 2[(n+l)/21 -2
II~I -2 [0($1{,/(n+1)1] 2

1

> 1/2 -

2 (n+l) 2 [0-1 (u)] 2 du

(n+l) - l

" (n+l)[1-2 f..l u 2(u)du]

- (n+l) [1-2I[4- 1 (l/(n+l)1 I ([g1{l1/(rrl)}]1-2 (n+1)-1 1
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4i2 -1 2 -> n-3-2['{l/(n+l)}] -2[[,- {1/(n+l)}I _1)- by (4)

> n-5 log n by Le-ma 3 and the fact that JD-l{l/(n+l)}j > 1.73

for n > 24. II

LEMKA 9: The normalised vectors for m and H satisfy

1112ml II I :, 4 I -1  IIm-HII

COROLLARY:

n
< 11 I111-_ I 'fi in i IIm-HII2  111 /1111.

PROOF OF LEMMA 9 AND COROLLARY: This is the same as that given by Sarkadi

(1975, p. 447) for a similar result. It depends on the fact that if

{ai} and {b I are both increasing sequences of n real numbers,

then Zn aibi >0 if either Zn a, - 0 or En b. - 0. In particular1ii 1113

En mHi> 0.
1 ii

m H

N 7M 1H1- 1 Then in the sketch, with w representing the

'. angle between m and H,

H in In m H cos(w/2)

< "length of any line from top of f to a point on m"

FIT - T*111 - I1H IJ-1 Ijm-H II .

"8Z



a - a -_i 30 W--vx IF P J -

n
Also, geometrically, the fact that E m H > 0 means that w < rr/2

and cos w > 2 1More formally,

cos(w/2) g7ID.

M I II

nn/

PROOF OF LEM 10 Hy mm

1 1 +1

-l 0 log1n/i) 11 2, J

were c0 isha compnsatipnent of i and natsf

PROOF OF LEMA 1: The formal pro6 fti emaflostesm

steps lmi -as- ths use to esabis There (1 in thi cs weexan

oLyM to: The first in termliy ols

EI _P- p ) ci o~ni)-12 1 i<[24nl
in



Z, -(p) + (Visi)P,(Oi)z in ( -

where y '(v) -e -V/0(-l(e-V)) and 6 is between Vi and s .

This yields

EIZ-, -(D (p )I E J-Iv -s ill '(e )I

By Lemma 1, ''(v) - -e-V{0(-l (e-V))1 is increasing in v and

is negative. Hence, I' '(e)I is decreasing as e increases

and by (4)

c. -1(u)I-1 for $-1(u) < -1

I-'i (log u-)I <

4 for $D-(u)Il <l

Therefore

'(log u1 )I < 8{1+10-1(u)[1} , D-l(u) <1 , that is, for 0 < u < D(l)

Now

hi
E{jVi-si I 1(ei)I} = + + f log u -sij (ei)Igjn(u)du

0 f h in fD i)

These integrals can be evaluated exactly as before, yielding the upper

bound

25
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which in turn is bounded by

c{i log(n/i) -/

LEMMA 12: The norm of vector m satisfies

0 <1-n- Ilmill < cn log n for all n

where c is a constant independent of n.

PROOF OF LEMMA 12:

(E{IZI11)2 < E{Z 2
in in

So

n1l 11m1 12 < n _1 n E {Z2}-

Also

nJl limit2 - n1 II1H112 + n1 11m-H11 2+ 2n H Hin(m in-Hin)

> 1-6ll n-c(n log n) 1 -c'nlo n

- By Leumas 7, 8, andl10.
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LEKA 13: The norms of vectors m and H satisfy

n1/2 l-1-HIl-11 :S cn-llog n

where c is a constant independent of n.

PROOF OF LEMMA 13: We have

I"° l -t I (° o-H in) + 2 i o o-IIi, ,1 1,+IIII
S1 i

< cn-l2 log n by Lemmas 7, 8, 10 and 12.

4.2. We can now turn to the major proof.

PROOF OF THEOREM 2: We have

n{r (Z,m)-r (Z,H)} - S- MM1HK]

where

2 n fl L,2 2 - 1 n l 2  2 =n 1  nZ2Mn n M in K n n H ins S n n ( nZ
n1 1 nin

and

4.0,

nn
2. in

2 a.s.
P.4As S - 1, n{r n(Z,m)-r n(ZH)} --- 0 if and only if

27



n P
A m 1 -H inK 0-~

NOv

A - {Zin-$o M1m M -H K11+~{' M(,- m M1 H K711
i-i in n 1n n'i in inn in n

+ N' - I
n (I inminUIlmll 11H1I)

-B n+ C n+ Dni say.

Using Mrk.ov's inequality B n p10if EI +I-- 0. By Leomas 6, 11, 12

and 13, we have

nI 1 0 .11 -HJH 11-~
A~~. EIB ~i l {EZ L(p ) I (M-I-II jI~KIln -in-0 i n in in in n n

[(n+1)/2] -/2 1 /21/2 -
< c fi log(n/i)I- [ci {J4og(n/i)}1/2+{log(n/i) n llog n]

< c(log n)- -0,0 as n -1, 0

By the proof of Lemua 6,

Cn< c [nl/ i- {log(n/i)}1/ [c i- 1{log(n/i -1/2

+ {log(n/i)} 1/2 n- log n]

*c(log n) -1

28



B- Finally, by the corollary to Lemna 9, and Lemmas 7, 8, and 12,

D -0 as n-*w.
n

This completes the proof of Theorem 2. jI

2

B-.
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